Pr. Nouh IZEM

Correction Examen d'Agèbre

Economie & Gestion: S4 Questionnaire: A

Partie 1:

Soit f un endomorphisme de \mathbb{R}^3 définie par :

$$f(x, y, z) = (3x - 2y + 2z, x + 2y, x + y + z).$$

Soit $\mathscr{B} = \{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 et $\mathscr{B}' =$ $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$ la famille définie par

$$\begin{cases} \epsilon_1 = -e_1 + e_2 + 2e_3 \\ \epsilon_2 = e_2 + e_3 \\ \epsilon_3 = e_1 + e_2 + e_3 \end{cases}$$

- 1. \mathscr{B}' est une base de \mathbb{R}^3 car :
 - \boxed{A} \mathscr{B}' est libre et Card $(\mathscr{B}') = 3$.
 - B Card(\mathscr{B}') = 3 et $\forall i$, $\varepsilon_i \in \mathbb{R}^3$.

 - \square Card(\mathscr{B}')=3=dim(\mathbb{R}^3).
- 2. Donner la matrice $A = \mathcal{M}(f, \mathcal{B}, \mathcal{B})$ de f relativement à la base canonique.

$$\begin{array}{c|cccc}
\mathbb{B} & 3 & 1 & 1 \\
-2 & 2 & 1 \\
2 & 0 & 1
\end{array}$$

1/3

4/3

- 3. L'inverse A⁻¹ est donné par :
 - 2/3 -2/31/6 -1/6-5/6
 - 2/3 -2/3-1/6 -1/3 -5/6 2/3-1/61/6 1/3 -5/6-4/3
- 4. Exprimer $f(e_1)$ dans la base \mathscr{B}' :

- 5. Former la matrice $A' = \mathcal{M}(f, \mathcal{B}', \mathcal{B}')$ de f dans la base \mathcal{B}' .

6. Déterminer la matrice de passage P de \mathscr{B} à \mathscr{B}'

$$\begin{array}{ccccc}
\hline
D
\end{array}
P = \left(\begin{array}{cccc}
-1 & 0 & 1 \\
1 & 1 & 1 \\
2 & 1 & 1
\end{array} \right)$$

les coordonnées d'un vecteur $u \in \mathbb{R}^3$ dans

la base \mathcal{B}' . Alors les coordonnées du vecteur u dans la base \mathcal{B} sont données par :

- A PX'.
- \square PX'P⁻¹
- C $P^{-1}X'$.
- D Autre.
- 8. Quelle relation lie A', A, P et P^{-1} ?
 - $A' = PAP^{-1}$.
 - $B A' = P^{-1}AP.$

Partie 2:

- 9. Soient $A=(a_{ij})\in\mathcal{M}_{m,p}(\mathbb{R}), \quad B=(b_{ij})\in\mathcal{M}_{p,n}(\mathbb{R}).$ On définit le produit A fois B par A · B = $(c_{ij})_{1 \leq i \leq m}$ avec :
- . Alors B est la matrice d'une application linéaire
 - $\boxed{\mathbf{A}} \quad f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3.$

 - \Box $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$.

11. Soit $C=\left(\begin{array}{ccc}1&-1&-2\\2&0&1\\0&1&1\end{array}\right)\in M_{3,3}(\mathbb{R}).$ Calculer la matrice

des cofacteurs de C:

$$\mathbb{B}\left(\begin{array}{ccc} -1 & -2 & 2 \\ -1 & 1 & 1 \\ -1 & -5 & 2 \end{array}\right)$$

$$\begin{array}{c|cccc}
C & -1 & -2 & -2 \\
-1 & 1 & -1 \\
-1 & -5 & 2
\end{array}$$

$$\boxed{D} \left(\begin{array}{cccc}
-1 & -2 & 2 \\
-1 & 1 & -1 \\
-1 & 5 & 2
\end{array} \right)$$

12. Parmi ces matrices déterminer celle qui est inversible.

$$\begin{bmatrix}
A & \begin{pmatrix}
-1 & 0 & 0 \\
4 & 3 & -6 \\
5 & 2 & -4
\end{pmatrix}$$

$$\mathbb{B}\left(\begin{array}{ccc} 2 & 0 & 1 \\ -1 & 1 & 2 \end{array}\right)$$

$$\begin{array}{c|cccc}
C & 1 & 4 & 5 \\
2 & 5 & 7 \\
3 & 6 & 9
\end{array}$$

$$\begin{array}{cccc}
D & \begin{pmatrix}
1 & 0 & 2 \\
0 & -1 & 1 \\
1 & -2 & 0
\end{pmatrix}$$

- 13. Soit f un endomorphisme sur un espace vectoriel E, \mathscr{B} et \mathscr{B}' deux bases sur E. La matrice de passage de \mathscr{B}' à \mathscr{B} est la matrice dont les colonnes sont formées par les coordonnées des vecteurs de :
 - $f(\mathcal{B})$ dans la base \mathcal{B}' .
 - $f(\mathcal{B}')$ dans la base \mathcal{B} .

 - \mathcal{B} dans la base \mathcal{B}' .
- 14. Soient \mathscr{B} et \mathscr{B}' deux bases de \mathbb{R}^n , $n \ge 2$. On note P la matrice de passage de la base \mathscr{B} à la base \mathscr{B}' . La matrice de passage de la base \mathscr{B}' à la base \mathscr{B} est alors :
 - A P^{-1}
 - $^{\rm B}$ $^{\rm t}{\rm P}$
 - C −P
 - D il n'y a pas de lien entre ces deux matrices, en général.
- 15. Soit M = $\begin{pmatrix} -7 & 6 & 6 & 6 \\ 0 & 2 & 0 & 0 \\ -3 & 3 & 2 & 3 \\ -6 & 3 & 6 & 5 \end{pmatrix}$. Alors M est la matrice d'une

application linéaire $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ définie par :

- A f(x, y, z, t) = (-7x + 6y + 6z + 6t, 2y, -3x + 3y + 2z + 3t, -6x + 3y + 6z + 5t).
- B f(x, y, z, t) = (-7x 3z 6t, 6x + 2y + 3z + 3t, 6x + 2z + 6t, 6x + 3z + 5t).
- f(x, y, z, t) = (6x+6y+6z-7t, 2z, 3x+2z+3t-3t, 5x+6y+3z-6t).
- D Autre.

- 16. On considère la matrice M de la question précédente. Calculer det(M) :
 - \triangle det(M)= -4.
 - B det(M) = 4.
 - c det(M)= 2.
 - D Autre.
- 17. Soit B = $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. En écrivant B sous forme : B =

 $N + I_4$, En calculant, N^4 exprimer B^n , $n \ge 1$ en fonction de n, I_4 et N.

$$\boxed{\mathbf{A}} \quad \mathbf{C}_n^1 \mathbf{I}_4^{n-1} \times \mathbf{N} + \mathbf{C}_n^2 \mathbf{I}_4^{n-2} \times \mathbf{N}^2 + \mathbf{C}_n^3 \mathbf{I}_4^{n-3} \times \mathbf{N}^3 + \mathbf{C}_n^4 \mathbf{I}_4^{n-4} \times \mathbf{N}^4.$$

$$\qquad \qquad \text{B} \quad \mathbf{C}_{n}^{0}\mathbf{I}_{4} + \mathbf{C}_{n}^{1}\mathbf{I}_{4}^{n-1} \times \mathbf{N} + \mathbf{C}_{n}^{2}\mathbf{I}_{4}^{n-2} \times \mathbf{N}^{2} + \mathbf{C}_{n}^{3}\mathbf{I}_{4}^{n-3} \times \mathbf{N}^{3} ,$$

- C Autre.
- 18. Soit A, B et P trois matrices de $M_{3,3}(\mathbb{R})$ tel que : $A = PBP^{-1}$ alors pour tout $n \ge 1$, on a :
 - $A^n = P^n B^n (P^{-1})^n.$
 - $\mathbf{B}^{n} = \mathbf{P}\mathbf{B}^{n}\mathbf{P}^{-1}.$

 - $D A^n = B^n$.
- 19. Soit N = $\begin{pmatrix} 1 & 1 & 2 \\ -2 & 3 & -1 \end{pmatrix}$. Alors
 - A rang(N) = 2.
 - \boxed{B} rang(N)=3.

 - D Autre.
- 20. Soient E, F et G trois espaces vectoriels de bases respectivement $\mathscr{B}, \mathscr{B}'$ et \mathscr{B}'' , et soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications linéaire. Alors
 - $\boxed{\mathbb{A}} \ \mathcal{M}(gof, \mathcal{B}, \mathcal{B}') = \mathcal{M}(g, \mathcal{B}, \mathcal{B}'') \times \mathcal{M}(f, \mathcal{B}'', \mathcal{B}').$
 - $\boxed{\mathbb{B}} \ \mathcal{M}(fog,\mathcal{B},\mathcal{B}'') = \mathcal{M}(f,\mathcal{B},\mathcal{B}') \times \mathcal{M}(g,\mathcal{B}',\mathcal{B}'').$
 - $\boxed{ \mathbb{C} } \ \mathcal{M} \big(gof, \mathcal{B}, \mathcal{B}'' \big) = \mathcal{M} (f, \mathcal{B}', \mathcal{B}'') \times \mathcal{M} (g, \mathcal{B}, \mathcal{B}').$